
ELEC 278 – Guest Lecture

Computer Vision
Kevin Hughes



Outline
● Computer Vision Intro

● Computer Vision Applications

– Motion Segmentation

– Mapping

– Object Recognition

– Face Recognition

– Deep Green

– ARPool

● Image Data Structure

● Point Cloud Data Structure

● Itertative Closest Point and K-D-Trees
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Computer Vision
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The science of image processing 
and understanding



Motion Segmentation
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Background Subtraction



Mapping
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SLAM



Object Recognition
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PWSE and BHT



Face Recognition
Eigenface
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Robotic Pool
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Deep Green



ARPool
Augmented Reality Pool
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Image Data Structure

● Images are a lot of data!

– A 640x480 image has 307200 pixels!

– For a grayscale image each pixel is a single unsigned char

– For a RGB image each pixel is an array of 3 unsigned chars
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Image Data Structure

● Usually implemented as a 1D array with a header 
that contains the other important information
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typedef struct Image
{

int depth; // 1 for grayscale, 3 for RGB
int width; // width of the image or cols of the matrix
int height; // height of image or rows of the matrix
unsigned char * data; // array

}



Image Data Structure
Iterating through an image:
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Image img = ImageLoad(“image.png”); // pretend function which inits the struct

for(int i = 0; i < img.width*img.height*img.depth; i++)
{

unsigned char val = img.data[i];
}

/* or */

int step = img.width * img.depth * sizeof(unsigned char);
/* sometimes step is actually bigger then required to make better use
of memory - “padding” */

for(int r = 0; r < img.height; r++)
{

for(int c = 0; c < img.width; c++)
{

unsigned char val = (img.data + step*r)[c];
}

}



Image Data Structure
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Image ROI
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Same array in memory but 2 
image headers

(not continous)



Point Clouds
3 Dimensional Image Data
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Point Clouds

● Array of Points
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pcl::PointCloud<pcl::PointXYZ>
Is essentially just a:
std::vector<PointT>



Data Alignment
● Data has 2 properties a value and a memory address

● Computers don't actually read a single address at a time 
but rather read chunks of 2,4,8,16 or 32 bytes

● Un-aligned data requires 2 reads compared to 1

http://www.songho.ca/misc/alignment/dataalign.html
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The Nearest Neighbour Problem

Given a set of points S and a query 
point q find the closest point in S to q

● Complexity of O(Nd)

– N is the number of points in S and d is 
the dimension of the space
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The Nearest Neighbour Problem

Important General problem in:
● Pattern Recognition

● Machine Learning

● Computer Vision

● Search
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Iterative Closest Point

● An Algorithm for aligning 2 point clouds
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http://dynface4d.isr.uc.pt/database.php

http://www.dlr.de/dlr/jobs/desktopdefault.aspx/tabid-10596/1003_read-6122/



Iterative Closest Point

Essentially the algorithm steps are :
– Associate points by the nearest neighbor criteria.

– Estimate transformation parameters using a mean 
square cost function.

– Transform the points using the estimated parameters.

– Iterate (re-associate the points and so on).

* (from wikipedia http://en.wikipedia.org/wiki/Iterative_closest_point)
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Iterative Closest Point

● ICP requires N runs of finding the nearest 
neighbour and is by far the most 
computationally expensive part of the 
algorithm
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Iterative Closest Point
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N is often very large 
for such problems



Iterative Closest Point

● How can nearest neighbour be made faster?

– K-D-Trees!
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K-D-Trees

The K-D-Tree is a binary tree where each node is a 
K-Dimensional point

We can think of each node as dividing the space with a 
hyperplane – all the points less than the plane are on one 
side while the points greater than are on the other side
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K-D-Trees
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K-D-Trees

http://en.wikipedia.org/wiki/K-d_tree



K-D-Trees
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K-D-Trees

http://en.wikipedia.org/wiki/K-d_tree



K-D-Trees

Searching:

● Tree is searched until a leaf 
node is found, this node is 
marked as the current best

● The alogrithm then travereses 
back up the tree checking if it is 
possible for there to be a closer 
point at each node

● The search finishes when the 
root node is reached
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K-D-Trees
Node buildKdTree( PointSet P )
{
   Node node = null ;

   if ( sizeof(P) <= minSize )
   {

node = new LeafNode( P ) ;
   }
   else
   {

int k = calcMaxSpreadD( P ) ;
      float mid = calcMid( P, k ) ;

node = new InternalNode(k,mid) ;

PointSet leftP = calcLE(P,k,mid) ;
PointSet rightP = calcGT(P,k,mid) ;

 
node.leftChild

= buildKdTree( leftP ) ;
node.rightChild

= buildKdTree( rightP ) ;
   }

   return node ;
}
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K-D-Trees - Michael Greenspan (2011)



K-D-Trees
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K-D-Trees - Michael Greenspan (2011)

Point searchKdTree( Point q, Node node )
{
   Point p ;
   if ( node.isInternal() )
   {
      int k = node.getK() ;
      float val = node.getVal() ;

if ( q.getK( k ) <= val )
{

p = searchKdTree( q, node.leftChild ) ;
if ( BOB ) search right subtree ;

}
else
{

p = searchKdTree( q, node.rightChild ) ;
if ( BOB ) search left subtree ;

}
   }
   else // leaf node
   {

 p = findP( q, node ) ;

 if ( BWB ) done ;
               else return p ;
       }
}



K-D-Trees

● Using K-D-Trees the nearest neighbour search is 
reduced to an average complexity of O(log n)
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Thanks!
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