ELEC 278 — Guest Lecture

Computer Vision

Kevin Hughes

Outline

« Computer Vision Intro
« Computer Vision Applications

- Motion Segmentation
- Mapping

— Object Recognition

- Face Recognition

- Deep Green

- ARPooOI

 Image Data Structure
e Point Cloud Data Structure

e |tertative Closest Point and K-D-Trees

04/02/13 ELEC 278 — Computer Vision

Computer Vision

The science of image processing
and understanding

04/02/13 ELEC 278 — Computer Vision

Motion Segmentation

B7 Tu—av| PE5 T T
e 4 | b = i | * =TT
R e — e . ¥
Nongt - e | .)
e -2 J.'_"!".'ﬁ
- = e '
= = g Aol

a) Original Images

b) Background Subtraction

¢) Contour Extraction

04/02/13 ELEC 278 — Computer Vision

04/02/13 ELEC 278 — Computer Vision

Object Recognition

¥ /
-
% | —

04/02/13 ELEC 278 — Computer Vision

Face Recognition

04/02/13 ELEC 278 — Computer Vision

Robotic Pool

04/02/13 ELEC 278 — Computer Vision

ARPool

04/02/13 ELEC 278 — Computer Vision

Image Data Structure

* Images are a lot of data!
- A 640x480 image has 307200 pixels!

- For a grayscale image each pixel is a single unsigned char

- For a RGB image each pixel is an array of 3 unsigned chars

=273, ya28H} ~ F-I26 G:200 B:209

04/02/13 ELEC 278 — Computer Vision

10

Image Data Structure

« Usually implemented as a 1D array with a header
that contains the other important information

typedef struct Image

{
int depth; // 1 for grayscale, 3 for RGB
int width; // width of the image or cols of the matrix
int height; // height of image or rows of the matrix
unsigned char * data; // array

}

04/02/13 ELEC 278 — Computer Vision

11

Image Data Structure

Iterating through an image:

Image img = ImageLoad(“image.png”); // pretend function which inits the struct

for(int i = 0; i < img.width*img.height*img.depth; i++)

{

unsigned char val = img.data([i];
}
[* or*/

int step = img.width * img.depth * sizeof(unsigned char);
[* sometimes step is actually bigger then required to make better use
of memory - “padding” */

for(int r = 0; r <img.height; r++)

{
for(int ¢ = 0; ¢ < img.width; c++)
{
unsigned char val = (img.data + step*r)[c];
}
}

04/02/13 ELEC 278 — Computer Vision

12

Image Data Structure

16 | 26 | 16

26| 41| 26

16 | 26 | 16

N N

- N e =

04/02/13 ELEC 278 — Computer Vision

13

Image ROI

Display image

04/02/13

Same array in memory but 2
image headers

(not continous)

ELEC 278 — Computer Vision

14

Point Clouds

04/02/13 ELEC 278 — Computer Vision

KINECT

for &

15

Point Clouds

* Array of Points

1 | struct PointXYZ
2 | {

3 float x;

4 float v;

5 float z;

6 float padding;

}i

pcl::PointCloud<pcl::PointXYZ>
|s essentially just a:
std::vector<PointT>

04/02/13 ELEC 278 — Computer Vision

16

Data Alignment

« Data has 2 properties a value and a memory address

e Computers don't actually read a single address at a time
but rather read chunks of 2,4,8,16 or 32 bytes

Memaory Memary

ERELS

4-byte memory access for aligned data 4-byte memory access for misaligned data

http://www.songho.ca/misc/alignment/dataalign.html

« Un-aligned data requires 2 reads compared to 1

04/02/13 ELEC 278 — Computer Vision

17

The Nearest Neighbour Problem

Given a set of points S and a query
point g find the closest pointin S to g

o Complexity of O(Nd)

- N Is the number of pointsin Sand d Is
the dimension of the space

04/02/13 ELEC 278 — Computer Vision 18

The Nearest Neighbour Problem

Important General problem In:
» Pattern Recognition
* Machine Learning
» Computer Vision
» Search

04/02/13 ELEC 278 — Computer Vision

19

lterative Closest Point

* An Algorithm for aligning 2 point clouds

http://dynface4d.isr.uc.pt/database.php

http://www.dIr.de/dIr/jobs/desktopdefault.aspx/tabid-10596/1003_read-6122/

04/02/13 ELEC 278 — Computer Vision

20

lterative Closest Point

Essentially the algorithm steps are :

- Associate points by the nearest neighbor criteria.

- Estimate transformation parameters using a mean
sguare cost function.

- Transform the points using the estimated parameters.

- Iterate (re-associate the points and so on).

* (from wikipedia http://en.wikipedia.org/wiki/lterative_closest_point)

04/02/13 ELEC 278 — Computer Vision

21

lterative Closest Point

* |CP requires N runs of finding the nearest
neighbour and is by far the most
computationally expensive part of the
algorithm |

04/02/13 ELEC 278 — Computer Vision 22

lterative Closest Point

04/02/13

ELEC 278 — Computer Vision

N is often very large
for such problems

23

lterative Closest Point

 How can nearest neighbour be made faster?

- K-D-Trees!

04/02/13 ELEC 278 — Computer Vision

24

K-D-Trees

The K-D-Tree is a binary tree where each node is a
K-Dimensional point

We can think of each node as dividing the space with a
hyperplane — all the points less than the plane are on one
side while the points greater than are on the other side

A

>
04/02/13 ELEC 278 — Computer Vision

25

K-D-Trees

def kdtree(point list, depth=0):

if not point list:
return None

Select axis based on depth so that axis cycles through all valid values
k = len(point list[0]) # assumes all points have the same dimension
axis = depth % Kk

Sort point list and choose median as pivot element
point list.sort(key=lambda point: point[axis])
median = len(point list) // 2 # choose median

Create node and construct subtrees

node = Node()

node.location = point list[median]

node.left child = kdtree(point list[:median], depth + 1)
node.right child = kdtree(point list[median + 1:], depth + 1)
return node

http://en.wikipedia.org/wiki/K-d_tree

04/02/13 ELEC 278 — Computer Vision

26

K-D-Tree

point list = [(2,3), (5,4),
tree = kdtree(point list)

K= - G?a {449

The resulting k-d tree.

http://en.wikipedia.org/wiki/K-d_tree

04/02/13

S

(9.6), (4,7), (8,1), (7,2)]

(9,6
A
(8,1
i
&

ELEC 278 — Computer Vision

27

K-D-Trees

Searching:

e Tree Is searched until a leaf
node Is found, this node Is
marked as the current best

* The alogrithm then travereses
pack up the tree checking if it is
nossible for there to be a closer
noint at each node

» The search finishes when the
root node Is reached

04/02/13 ELEC 278 — Computer Vision

10

0

0

k-d tree decomposition for the point set (2,3),
(5,4), (9,6), (4,7), (8,1), (7,2).

10

K-D-Trees

Node buildKdTree(PointSet P)

{

Node node =

null ;

if (sizeof(P) <= minSize)

{

node

}

else

{

new LeafNode(P) ;

int k = calcMaxSpreadD(P) ;
float mid = calcMid(P, k) ;

node

new InternalNode (k,mid) ;

PointSet leftP = calclE(P,k,mid) ;
PointSet rightP = calcGT (P,k,mid) ;

node.leftChild

= buildKdTree(leftP) ;

node.rightChild

return node

04/02/13

.
4

= buildKdTree(rightP) ;

ELEC 278 — Computer Vision

29

K-D-Trees

Point searchKdTree(Point q, Node node)

if (node.isInternal())

int k = node.getK()

= node.getVal() ;

if (g.getK(k) <= val)

p = searchKdTree(g, node.leftChild)
if (BOB) search right subtree ;

.
4

4

p = searchKdTree(q, node.rightChild)
if (BOB) search left subtree ;

p = £findP(q, node) ;

{
Point p ;
{
float val
{
}
else
{
}
}
else // leaf node
{
if (BWB) done ;
else return p ;
}
}
04/02/13

ELEC 278 — Computer Vision

30

K-D-Trees

» Using K-D-Trees the nearest neighbour search is
reduced to an average complexity of O(log n)

04/02/13 ELEC 278 — Computer Vision

31

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

