ELEC 278 — Guest Lecture

Computer Vision

Kevin Hughes



Outline

« Computer Vision Intro
« Computer Vision Applications

- Motion Segmentation
- Mapping

— Object Recognition

- Face Recognition

- Deep Green

- ARPooOI

 Image Data Structure
e Point Cloud Data Structure

e |tertative Closest Point and K-D-Trees
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Computer Vision

The science of image processing
and understanding
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Motion Segmentation
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a) Original Images

b) Background Subtraction

¢) Contour Extraction
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Object Recognition
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Face Recognition
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Robotic Pool
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ARPool
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Image Data Structure

* Images are a lot of data!
- A 640x480 image has 307200 pixels!

- For a grayscale image each pixel is a single unsigned char

- For a RGB image each pixel is an array of 3 unsigned chars

=273, ya28H} ~ F-I26 G:200 B:209
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Image Data Structure

« Usually implemented as a 1D array with a header
that contains the other important information

typedef struct Image

{
int depth; // 1 for grayscale, 3 for RGB
int width; // width of the image or cols of the matrix
int height; // height of image or rows of the matrix
unsigned char * data; // array

}
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Image Data Structure

Iterating through an image:

Image img = ImageLoad(“image.png”); // pretend function which inits the struct

for(int i = 0; i < img.width*img.height*img.depth; i++)

{

unsigned char val = img.data([i];
}
[* or*/

int step = img.width * img.depth * sizeof(unsigned char);
[* sometimes step is actually bigger then required to make better use
of memory - “padding” */

for(int r = 0; r <img.height; r++)

{
for(int ¢ = 0; ¢ < img.width; c++)
{
unsigned char val = (img.data + step*r)[c];
}
}
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Image Data Structure
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Image ROI

Display image

04/02/13

Same array in memory but 2
image headers

(not continous)
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Point Clouds
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Point Clouds

* Array of Points

1 | struct PointXYZ
2 | {

3 float x;

4 float v;

5 float z;

6 float padding;

}i

pcl::PointCloud<pcl::PointXYZ>
|s essentially just a:
std::vector<PointT>
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Data Alignment

« Data has 2 properties a value and a memory address

e Computers don't actually read a single address at a time
but rather read chunks of 2,4,8,16 or 32 bytes

Memaory Memary

ERELS

4-byte memory access for aligned data 4-byte memory access for misaligned data

http://www.songho.ca/misc/alignment/dataalign.html

« Un-aligned data requires 2 reads compared to 1
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The Nearest Neighbour Problem

Given a set of points S and a query
point g find the closest pointin S to g

o Complexity of O(Nd)

- N Is the number of pointsin Sand d Is
the dimension of the space
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The Nearest Neighbour Problem

Important General problem In:
» Pattern Recognition
* Machine Learning
» Computer Vision
» Search
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lterative Closest Point

* An Algorithm for aligning 2 point clouds

http://dynface4d.isr.uc.pt/database.php

http://www.dIr.de/dIr/jobs/desktopdefault.aspx/tabid-10596/1003_read-6122/
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lterative Closest Point

Essentially the algorithm steps are :

- Associate points by the nearest neighbor criteria.

- Estimate transformation parameters using a mean
sguare cost function.

- Transform the points using the estimated parameters.

- Iterate (re-associate the points and so on).

* (from wikipedia http://en.wikipedia.org/wiki/lterative_closest_point)
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lterative Closest Point

* |CP requires N runs of finding the nearest
neighbour and is by far the most
computationally expensive part of the
algorithm |
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lterative Closest Point
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N is often very large
for such problems
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lterative Closest Point

 How can nearest neighbour be made faster?

- K-D-Trees!
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K-D-Trees

The K-D-Tree is a binary tree where each node is a
K-Dimensional point

We can think of each node as dividing the space with a
hyperplane — all the points less than the plane are on one
side while the points greater than are on the other side

A

>
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K-D-Trees

def kdtree(point list, depth=0):

if not point list:
return None

# Select axis based on depth so that axis cycles through all valid values
k = len(point list[0]) # assumes all points have the same dimension
axis = depth % Kk

# Sort point list and choose median as pivot element
point list.sort(key=lambda point: point[axis])
median = len(point list) // 2 # choose median

# Create node and construct subtrees

node = Node()

node.location = point list[median]

node.left child = kdtree(point list[:median], depth + 1)
node.right child = kdtree(point list[median + 1:], depth + 1)
return node

http://en.wikipedia.org/wiki/K-d_tree

04/02/13 ELEC 278 — Computer Vision

26



K-D-Tree

point list = [(2,3), (5,4),
tree = kdtree(point list)

K= - G?a {449

The resulting k-d tree.

http://en.wikipedia.org/wiki/K-d_tree
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K-D-Trees

Searching:

e Tree Is searched until a leaf
node Is found, this node Is
marked as the current best

* The alogrithm then travereses
pack up the tree checking if it is
nossible for there to be a closer
noint at each node

» The search finishes when the
root node Is reached
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k-d tree decomposition for the point set (2,3),
(5,4), (9,6), (4,7), (8,1), (7,2).
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K-D-Trees

Node buildKdTree( PointSet P )

{

Node node =

null ;

if ( sizeof(P) <= minSize )

{

node

}

else

{

new LeafNode( P ) ;

int k = calcMaxSpreadD( P ) ;
float mid = calcMid( P, k ) ;

node

new InternalNode (k,mid) ;

PointSet leftP = calclE(P,k,mid) ;
PointSet rightP = calcGT (P,k,mid) ;

node.leftChild

= buildKdTree( leftP ) ;

node.rightChild

return node
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= buildKdTree( rightP ) ;
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K-D-Trees

Point searchKdTree( Point q, Node node )

if ( node.isInternal() )

int k = node.getK()

= node.getVal() ;

if ( g.getK( k ) <= val )

p = searchKdTree( g, node.leftChild )
if ( BOB ) search right subtree ;

.
4

4

p = searchKdTree( q, node.rightChild )
if ( BOB ) search left subtree ;

p = £findP( q, node ) ;

{
Point p ;
{
float val
{
}
else
{
}
}
else // leaf node
{
if (BWB ) done ;
else return p ;
}
}
04/02/13
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K-D-Trees

» Using K-D-Trees the nearest neighbour search is
reduced to an average complexity of O(log n)
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Thanks!
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