
ELEC 278 – Guest Lecture

Computer Vision
Kevin Hughes

Outline
● Computer Vision Intro

● Computer Vision Applications

– Motion Segmentation

– Mapping

– Object Recognition

– Face Recognition

– Deep Green

– ARPool

● Image Data Structure

● Point Cloud Data Structure

● Itertative Closest Point and K-D-Trees

04/02/13 ELEC 278 – Computer Vision 2

Computer Vision

04/02/13 ELEC 278 – Computer Vision 3

The science of image processing
and understanding

Motion Segmentation

04/02/13 ELEC 278 – Computer Vision 4

Background Subtraction

Mapping

04/02/13 ELEC 278 – Computer Vision 5

SLAM

Object Recognition

04/02/13 ELEC 278 – Computer Vision 6

PWSE and BHT

Face Recognition
Eigenface

04/02/13 ELEC 278 – Computer Vision 7

Robotic Pool

04/02/13 ELEC 278 – Computer Vision 8

Deep Green

ARPool
Augmented Reality Pool

04/02/13 ELEC 278 – Computer Vision 9

Image Data Structure

● Images are a lot of data!

– A 640x480 image has 307200 pixels!

– For a grayscale image each pixel is a single unsigned char

– For a RGB image each pixel is an array of 3 unsigned chars

04/02/13 ELEC 278 – Computer Vision 10

Image Data Structure

● Usually implemented as a 1D array with a header
that contains the other important information

04/02/13 ELEC 278 – Computer Vision 11

typedef struct Image
{

int depth; // 1 for grayscale, 3 for RGB
int width; // width of the image or cols of the matrix
int height; // height of image or rows of the matrix
unsigned char * data; // array

}

Image Data Structure
Iterating through an image:

04/02/13 ELEC 278 – Computer Vision 12

Image img = ImageLoad(“image.png”); // pretend function which inits the struct

for(int i = 0; i < img.width*img.height*img.depth; i++)
{

unsigned char val = img.data[i];
}

/* or */

int step = img.width * img.depth * sizeof(unsigned char);
/* sometimes step is actually bigger then required to make better use
of memory - “padding” */

for(int r = 0; r < img.height; r++)
{

for(int c = 0; c < img.width; c++)
{

unsigned char val = (img.data + step*r)[c];
}

}

Image Data Structure

04/02/13 ELEC 278 – Computer Vision 13

Image ROI

04/02/13 ELEC 278 – Computer Vision 14

Same array in memory but 2
image headers

(not continous)

Point Clouds
3 Dimensional Image Data

04/02/13 ELEC 278 – Computer Vision 15

Point Clouds

● Array of Points

04/02/13 ELEC 278 – Computer Vision 16

pcl::PointCloud<pcl::PointXYZ>
Is essentially just a:
std::vector<PointT>

Data Alignment
● Data has 2 properties a value and a memory address

● Computers don't actually read a single address at a time
but rather read chunks of 2,4,8,16 or 32 bytes

● Un-aligned data requires 2 reads compared to 1

http://www.songho.ca/misc/alignment/dataalign.html

04/02/13 ELEC 278 – Computer Vision 17

The Nearest Neighbour Problem

Given a set of points S and a query
point q find the closest point in S to q

● Complexity of O(Nd)

– N is the number of points in S and d is
the dimension of the space

04/02/13 ELEC 278 – Computer Vision 18

The Nearest Neighbour Problem

Important General problem in:
● Pattern Recognition

● Machine Learning

● Computer Vision

● Search

04/02/13 ELEC 278 – Computer Vision 19

Iterative Closest Point

● An Algorithm for aligning 2 point clouds

04/02/13 ELEC 278 – Computer Vision 20

http://dynface4d.isr.uc.pt/database.php

http://www.dlr.de/dlr/jobs/desktopdefault.aspx/tabid-10596/1003_read-6122/

Iterative Closest Point

Essentially the algorithm steps are :
– Associate points by the nearest neighbor criteria.

– Estimate transformation parameters using a mean
square cost function.

– Transform the points using the estimated parameters.

– Iterate (re-associate the points and so on).

* (from wikipedia http://en.wikipedia.org/wiki/Iterative_closest_point)

04/02/13 ELEC 278 – Computer Vision 21

Iterative Closest Point

● ICP requires N runs of finding the nearest
neighbour and is by far the most
computationally expensive part of the
algorithm

04/02/13 ELEC 278 – Computer Vision 22

Iterative Closest Point

04/02/13 ELEC 278 – Computer Vision 23

N is often very large
for such problems

Iterative Closest Point

● How can nearest neighbour be made faster?

– K-D-Trees!

04/02/13 ELEC 278 – Computer Vision 24

K-D-Trees

The K-D-Tree is a binary tree where each node is a
K-Dimensional point

We can think of each node as dividing the space with a
hyperplane – all the points less than the plane are on one
side while the points greater than are on the other side

04/02/13 ELEC 278 – Computer Vision 25

K-D-Trees

04/02/13 ELEC 278 – Computer Vision 26

K-D-Trees

http://en.wikipedia.org/wiki/K-d_tree

K-D-Trees

04/02/13 ELEC 278 – Computer Vision 27

K-D-Trees

http://en.wikipedia.org/wiki/K-d_tree

K-D-Trees

Searching:

● Tree is searched until a leaf
node is found, this node is
marked as the current best

● The alogrithm then travereses
back up the tree checking if it is
possible for there to be a closer
point at each node

● The search finishes when the
root node is reached

04/02/13 ELEC 278 – Computer Vision 28

K-D-Trees
Node buildKdTree(PointSet P)
{
 Node node = null ;

 if (sizeof(P) <= minSize)
 {

node = new LeafNode(P) ;
 }
 else
 {

int k = calcMaxSpreadD(P) ;
 float mid = calcMid(P, k) ;

node = new InternalNode(k,mid) ;

PointSet leftP = calcLE(P,k,mid) ;
PointSet rightP = calcGT(P,k,mid) ;

node.leftChild

= buildKdTree(leftP) ;
node.rightChild

= buildKdTree(rightP) ;
 }

 return node ;
}

04/02/13 ELEC 278 – Computer Vision 29

K-D-Trees - Michael Greenspan (2011)

K-D-Trees

04/02/13 ELEC 278 – Computer Vision 30

K-D-Trees - Michael Greenspan (2011)

Point searchKdTree(Point q, Node node)
{
 Point p ;
 if (node.isInternal())
 {
 int k = node.getK() ;
 float val = node.getVal() ;

if (q.getK(k) <= val)
{

p = searchKdTree(q, node.leftChild) ;
if (BOB) search right subtree ;

}
else
{

p = searchKdTree(q, node.rightChild) ;
if (BOB) search left subtree ;

}
 }
 else // leaf node
 {

 p = findP(q, node) ;

 if (BWB) done ;
 else return p ;
 }
}

K-D-Trees

● Using K-D-Trees the nearest neighbour search is
reduced to an average complexity of O(log n)

04/02/13 ELEC 278 – Computer Vision 31

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

