ELEC 278 – Guest Lecture

Computer Vision Kevin Hughes

Outline

- Computer Vision Intro
- Computer Vision Applications
 - Motion Segmentation
 - Mapping
 - Object Recognition
 - Face Recognition
 - Deep Green
 - ARPool
- Image Data Structure
- Point Cloud Data Structure
- Itertative Closest Point and K-D-Trees

Computer Vision

The science of image processing and understanding

Motion Segmentation

Background Subtraction

a) Original Images

b) Background Subtraction

c) Contour Extraction

Mapping

Object Recognition

Face Recognition

Eigenface

Robotic Pool

04/02/13

ARPOO Augmented Reality Pool

- Images are a lot of data!
 - A 640x480 image has 307200 pixels!
 - For a grayscale image each pixel is a single unsigned char
 - For a RGB image each pixel is an array of 3 unsigned chars

• Usually implemented as a 1D array with a header that contains the other important information

```
typedef struct Image
{
    int depth; // 1 for grayscale, 3 for RGB
    int width; // width of the image or cols of the matrix
    int height; // height of image or rows of the matrix
    unsigned char * data; // array
}
```

```
Iterating through an image:
```

```
Image img = ImageLoad("image.png"); // pretend function which inits the struct
```

```
for(int i = 0; i < img.width*img.height*img.depth; i++)
{
     unsigned char val = img.data[i];
}</pre>
```

/* or */

```
int step = img.width * img.depth * sizeof(unsigned char);
/* sometimes step is actually bigger then required to make better use
of memory - "padding" */
for(int r = 0; r < img.height; r++)
{
    for(int c = 0; c < img.width; c++)
    {
        unsigned char val = (img.data + step*r)[c];
    }
}</pre>
```


<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Image ROI

Same array in memory but 2 image headers

(not continous)

Point Clouds

3 Dimensional Image Data

For XBOX 360.

Point Clouds

• Array of Points

pcl::PointCloud<pcl::PointXYZ>
Is essentially just a:
std::vector<PointT>

Data Alignment

- Data has 2 properties a value and a memory address
- Computers don't actually read a single address at a time but rather read chunks of 2,4,8,16 or 32 bytes

• Un-aligned data requires 2 reads compared to 1

The Nearest Neighbour Problem

Given a set of points S and a query point q find the closest point in S to q

- Complexity of O(Nd)
 - N is the number of points in S and d is the dimension of the space

The Nearest Neighbour Problem

Important General problem in:

- Pattern Recognition
- Machine Learning
- Computer Vision
- Search

• An Algorithm for aligning 2 point clouds

http://dynface4d.isr.uc.pt/database.php

http://www.dlr.de/dlr/jobs/desktopdefault.aspx/tabid-10596/1003_read-6122/

04/02/13

Essentially the algorithm steps are :

- Associate points by the nearest neighbor criteria.
- Estimate transformation parameters using a mean square cost function.
- Transform the points using the estimated parameters.
- Iterate (re-associate the points and so on).

* (from wikipedia http://en.wikipedia.org/wiki/Iterative_closest_point)

 ICP requires N runs of finding the nearest neighbour and is by far the most computationally expensive part of the algorithm

N is often very large for such problems

- How can nearest neighbour be made faster?
 - K-D-Trees!

The K-D-Tree is a binary tree where each node is a K-Dimensional point

We can think of each node as dividing the space with a hyperplane – all the points less than the plane are on one side while the points greater than are on the other side

K-D-Trees

```
def kdtree(point_list, depth=0):
```

```
if not point_list:
    return None
```

```
# Select axis based on depth so that axis cycles through all valid values
k = len(point_list[0]) # assumes all points have the same dimension
axis = depth % k
```

```
# Sort point list and choose median as pivot element
point_list.sort(key=lambda point: point[axis])
median = len(point list) // 2 # choose median
```

```
# Create node and construct subtrees
node = Node()
node.location = point_list[median]
node.left_child = kdtree(point_list[:median], depth + 1)
node.right_child = kdtree(point_list[median + 1:], depth + 1)
return node
```

http://en.wikipedia.org/wiki/K-d_tree

K-D-Trees

point_list = [(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)]
tree = kdtree(point_list)

http://en.wikipedia.org/wiki/K-d_tree

K-D-Trees

Searching:

- Tree is searched until a leaf node is found, this node is marked as the current best
- The alogrithm then travereses back up the tree checking if it is possible for there to be a closer point at each node
- The search finishes when the root node is reached

K-D-Trees K-D-Trees - Michael Greenspan (2011)

Node buildKdTree(PointSet P) Node node = null ; if (sizeof(P) <= minSize)</pre> { node = new LeafNode(P) ; } else { int k = calcMaxSpreadD(P) ; float mid = calcMid(P, k) ; node = new InternalNode(k,mid) ; PointSet leftP = calcLE(P,k,mid) ; PointSet rightP = calcGT(P,k,mid) ; node.leftChild = buildKdTree(leftP) ; node.rightChild = buildKdTree(rightP) ; }

```
return node ;
```

}

{

K-D-Trees K-D-Trees - Michael Greenspan (2011)

Point searchKdTree(Point q, Node node) **{** Point p ; if (node.isInternal()) **{** int k = node.getK() ; float val = node.getVal() ; if $(q.getK(k) \le val)$ ł p = searchKdTree(q, node.leftChild) ; if (BOB) search right subtree; }

```
else
        {
              p = searchKdTree( q, node.rightChild ) ;
              if (BOB) search left subtree;
        }
else
       // leaf node
   p = findP( q, node ) ;
```

```
if (BWB) done;
else return p;
```

}

```
04/02/13
```

}

{

}

• Using K-D-Trees the nearest neighbour search is reduced to an average complexity of O(log n)

Thanks!